

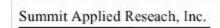
Hydraulic Actuator Using Novel Technology (HAUNT)

Robert Jacques and Shoko Yoshikawa
Active Control eXperts, Inc.
Cambridge, MA

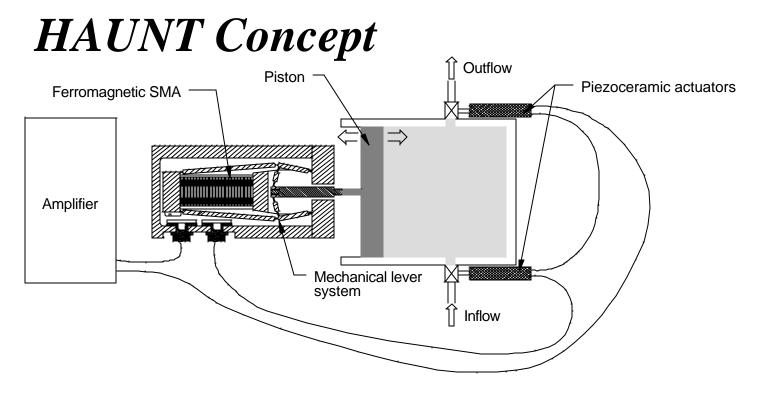
DARPA Technical Interchange Meeting (TIM)/
Compact Hybrid Actuation Program (CHAP) Kickoff

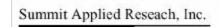
June 26-28, 2000 Baltimore, MD

Objective and Scope of the Phase I Program

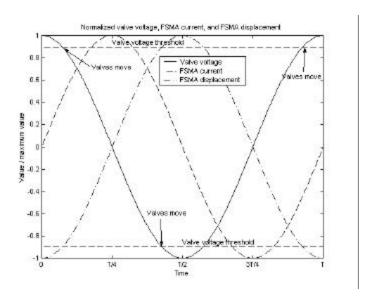

The objective is a successful proof of concept for smaller and more efficient hydraulic actuation system by employing ferromagnetic shape memory alloy to drive the fluid pump and piezoelectric ceramic actuator to operate flow control valves.

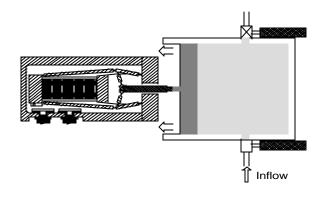
The scope of the Phase I program includes design of pump and electronics, fabrication, and testing as a bench top proof-of-concept model.

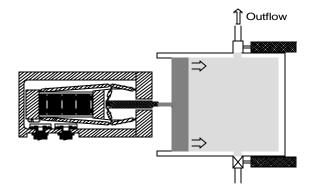




A ferromagnetic shape memory alloy drives a fluid piston through a mechanical levering system. Fluid flow is controlled using mechanically bistable valves operated by piezoceramic actuators. Piezoceramic and ferromagnetic actuators are connected in series and driven by a common amplifier. Energy flow is maximized by operating the system at the mechanical resonance of the pump and the electrical resonance of the ferromagnetic/piezoceramic system.

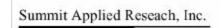


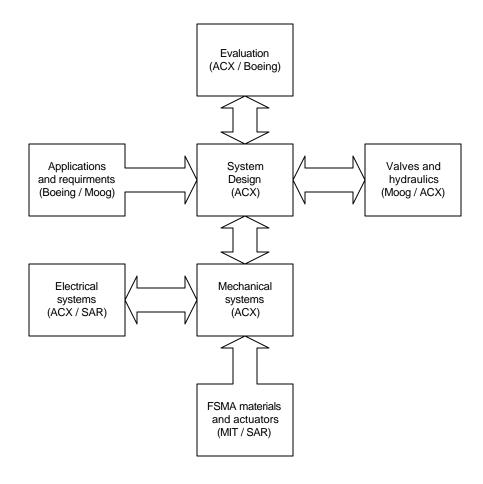


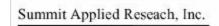


HAUNT Concept

Operating voltage and current of the system over a single period of oscillation



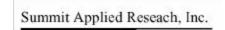



Team Members and their Role

HAUNT Team Members

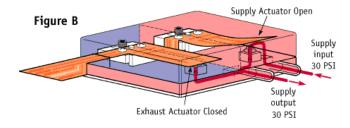
Technical POC

Name	Organization	Tel	Fax	e-mail	Role
<leading< td=""><td></td><td></td><td></td><td></td><td></td></leading<>					
organization>					
Robert Jacques	ACX	(517) 577-0700 x238	(517) 577-0656	robert@acx.com	PI : Dynamics
Shoko Yoshikawa	ACX	(517) 577-0700 x282	(517) 577-0656	shoko@acx.com	Co-PI: Materials
<subcontractor></subcontractor>					
George Zipfel	SAR	(908) 522-1459	(908) 522-8389	zipfel@attglobal.net	Electronics
Robert O'Handley	MIT	(617) 253-6913	(617) 253-9657	bobohand@mit.edu	FMSA
Edward White	Boeing	(314)232-1479	(314) 777-1171	edward.v.white@boeing.co	Application
				m	
George Small	Moog	(716)687-4460	(716) 687-4736	Gsmall.inc@moog.com	Hydraulic system

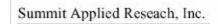

Address

ACX : Active Control eXperts, Inc.	215 First St. Cambridge, MA 02142-1227			
SAR: Summit Applied Research, Inc.	164 Canoe Brook Parkway, Summit, NJ 07901-1632			
MIT : Massachusetts Institute of	Department of Materials Science and Engineering, Room 4-045, Cambridge, MA 02139			
Technology				
Moog: Moog Inc. Aircraft Group	Seneca & Jamison Rd. East Aurora, NY 14052			
Boeing: The Boeing Company	P.O. Box 516 MC S102-1310, St Louis, MO 63166-0516			

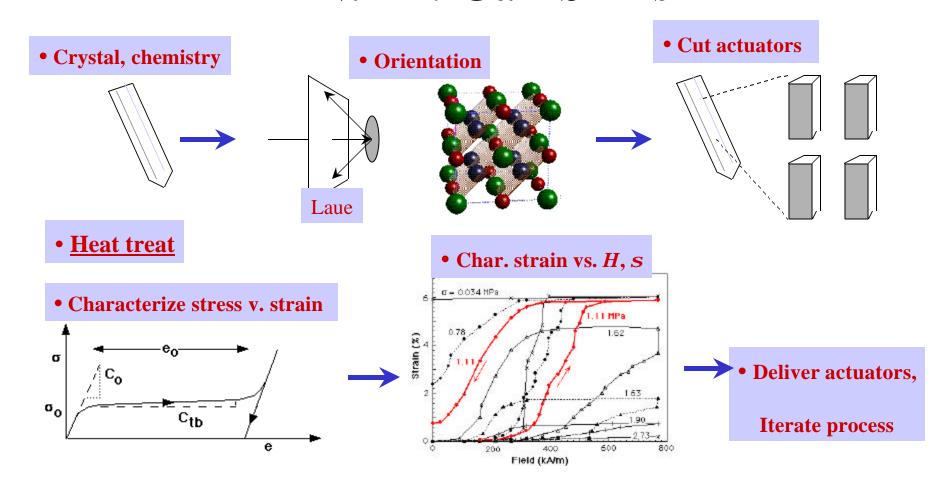


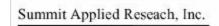


Piezoelectric Actuators



- -An example of ACX QuickPack bimorph actuator designed for Landis&Stafa's Analog Output Valve controls a pnumatic air pressure.
- -Haunt may require stack actuator.




Ni-Mn-Ga FSMAs

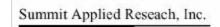
Ni-Mn-Ga FSMAs

Objectives

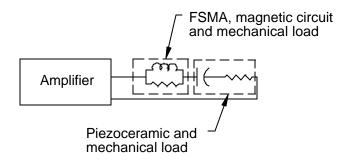
Supply Ferromagnetic Shape Memory Alloy samples...

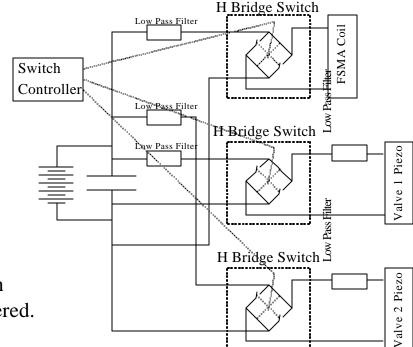
- Purchase FSMA crystal of specified composition
- Verify composition electron probe microanalysis (EPMA)
- Orient crystal Laue x-ray diffraction
- Cut actuators electric discharge milling

... Suitable for ACX hybrid actuator

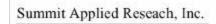

- Heat treat relieve stress, chemical ordering, avoid precipitation
- Collaborate on design optimized actuator magnetics, bias
- Charactereize e(s,H), M(H,T)
- Deliver actuators to ACX

... Iterate to optimize chemistry, anneal, response





Electronics Development

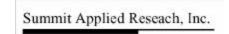

Electrical representation of Amplifier/FMSA/Piezoceramic circuit, and schematic of the power electronics. Potential use of energy recycling between FMSA and Piezoceramic is being considered.

Target Application

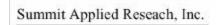
• Moog Inc.

The X-36 demonstrator air craft

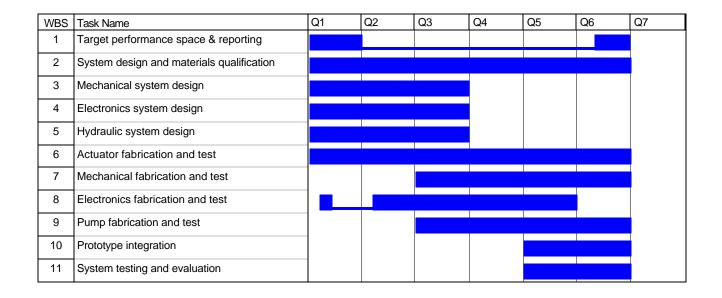
Typical X-36 Actuator (6.35 in. long pin to pin)


• Boeing

Potential application toward UCAV


Technical Innovations and Challenges

- •Actuator application of the new research materials (FSMA).
- •Combination of the different smart materials, PZT and FSMA, with innovative electronics development to achieve desirable system properties.
- •Development of low loss mechanical displacement amplification and small scale hydraulic system.
- Proof of concept to hardware deliverable possibility for desired application.



Schedule

